Mark Scheme (Provisional)

Summer 2021

Pearson Edexcel International GCSE

In Chemistry (4CH1) Paper 1C and Science (Double Award) (4SD0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021

Question Paper Log Number 66056
Publications Code 4SD0_1C_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
		ALLOW correct formulae	5
	Information Substance		
	a good conductor of electricity copper		
	an element that has a basic oxide copper		
	a substance used as a fuel		
	a major cause of acid rain sulfur dioxide		
	a non-metallic element that is a solid at room temperature iodine		
	A description which refers to the following points		2
	M1 bubble/add (the gas/carbon dioxide) into limewater M2 (limewater) turns cloudy/milky	ACCEPT calcium hydroxide ACCEPT white precipitate M2 dep on use of limewater/calcium hydroxide in M1	

Question number	Answer	Notes	Marks
2 (c)	- sum of masses multiplied by percentages - division by 100 - answer given to 1 decimal place Example calculation M1 $(91.2 \times 20)+(8.80 \times 22)$ OR 2017.6 M2 $2017.6 \div 100$ OR 20.176 M3 20.2 OR answer from M2 given to 1d.p.	Correct answer of 20.2 with or without working scores 3 ACCEPT 2018 ACCEPT 20.18 correct answer without working scores 3 20.176 and 20.18 without working score 2 2020 scores M1 and M3 20 without working scores 0 20 with correct working scores 2	3

Question number	Answer	Notes	Marks
3 (a) (i) (ii)	diffusion Any two from M1 stir (the mixture) M2 heat (the mixture) M3 grind the sugar or break into smaller pieces or increase its surface area	ALLOW shake/swirl ALLOW any description of heating	1 2
(b) (i) (ii)	(simple) distillation An explanation that links the following two points M1 (water/ vapour/ steam / gas) is cooled M2 and condenses OR in the condenser	REJECT fractional distillation ALLOW distilling OWTTE	1
			Total 6

Question number	Answer	Notes	Marks
(ii) (iii) (iv)	A description including any three of the following M1 pour some solvent into a beaker /chromatography tank M2 place the paper in the solvent so that the food colourings are above the level of the solvent M3 leave the paper until the solvent reaches the level shown in the diagram/ has moved to near the top of the paper OWTTE M4 take the paper out and leave to dry one/1 ($\mathrm{F} /$ it is) insoluble (in the solvent)/ does not dissolve (in the solvent) M1 E and H M2 they contain a dye that moved the furthest (distance up the paper)/ is closest to the solvent front / has the greatest R_{f} value	M1 and M2 can be scored from a labelled diagram ALLOW any named solvent	3
(b)	M1 distance moved by solvent $=59-61 \mathrm{~mm}$ and distance moved by the dye $=37-41 \mathrm{~mm}$ M2 distance moved by the dye \div distance moved by the solvent ≈ 0.67 M3 (the dye in food colouring) G	ALLOW distances in cm e.g. 6 cm and 4 cm If paper has been printed on A4 distances will be $51-53 \mathrm{~mm}$ and $33-37 \mathrm{~mm}$ ALLOW alternative methods	3

Question number	Answer	Notes	Marks
$5 \text { (c) (i) }$	 M1 correct repeat unit M2 extension bonds, brackets and n after brackets	If double bond between carbon atoms scores 0	2
(ii)	A discussion which refers to the following points M1 polymers/poly(propene) will remain in landfill indefinitely OWTTE M2 (as they) are inert /unreactive/do not biodegrade M3 burning produces toxic gases	ALLOW burning produces greenhouse	3

(ii)	D yellow		1
A is incorrect as sodium ions do not give a green flame B is incorrect as sodium ions do not give a lilac flame C is incorrect as sodium ions do not give a red flame			

Question number	Answer	Notes	Marks
6 (c) (i)	K^{+}and $\mathrm{SO}_{4}{ }^{2-}$		1
(ii)	An explanation that links the following four points		4
	M1 (potassium sulfate) has a giant (ionic) structure /lattice		
	M2 electrostatic attraction between oppositely charged ions		
	M3 (ionic bonds or forces / attractions between ions) are strong	ionic bonds are strong scores M3	
	M4 a large amount of energy is needed to overcome the forces/break the bonds		
			Total 15

Question number	Answer		Notes	Marks
7 (a) (i)	\rightarrow magnesium chloride + hydrogen		ACCEPT in either order	1
(b) (i)			ALLOW ECF from incorrect starting temperature	2
	temperature of the acid at the start in ${ }^{\circ} \mathrm{C}$	22.4		
	highest temperature reached in ${ }^{\circ} \mathrm{C}$	43.2		
	temperature rise in ${ }^{\circ} \mathrm{C}$	20.8		

Question number	Answer	Notes	Marks
9 (a) (i) (ii) (iii)	carbon dioxide/a gas is given off/escapes to prevent acid/ liquid/ solution/ spray from leaving the flask OWTTE An explanation that links two of the following M1 (insoluble) calcium sulfate will form M2 which will form a coating/ layer on the marble chips M3 slowing down/ preventing/ stopping the reaction	REJECT incorrect gas M3 dep on M1 or M2	1 1 2
(b) (i)	An explanation that links the following four points M1 the curve is steep(est) at the start M2 because the (acid) concentration is high(est) M3 the curve becomes less steep as the solution/ acid is becoming more dilute M4 the curve levels off/ stops going up when the acid has all been used up OR M1 the curve is steep(est) at the start M2 because the reaction is fast(est) at the start M3 the curve becomes less steep because the reaction slows down M4 the curve levels off/stops going up when the acid has all been used up	ALLOW there are the most (acid) particles in solution ALLOW the curve becomes less steep as there are fewer acid particles/particles in solution IGNORE references to particles of marble chips IGNORE references to energy	4

(ii)	M1 curve drawn starting at the origin and below the original curve M2 curve levels off at $0.27 \mathrm{~g}+$ or - half a small square	2

Question number	Answer	Notes	Marks
9 (c)	An explanation that links the following four points M1 the rate of reaction increases/ the reaction is faster/ the reaction speeds up and any three from M2 because the particles gain (kinetic) energy /move faster M3 there are more collisions per unit time	4	
	M4 more collisions/particles have energy greater than the activation energy M5 more collisions are successful		
		(there are more frequent successful collisions scores M3 and M5	

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

